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Abstract The Schrödinger equation for a charged particle in the field of a nonrela-
tivistic electric quadrupole in two dimensions is known to be separable in spherical
coordinates. We investigate the occurrence of bound states of negative energy and
find that the particle can be bound by a quadrupole of any magnitude. This result is
remarkably different from the one for a charged particle in the field of a nonrelativistic
electric dipole in three dimensions where a minimum value of the dipole strength is
necessary for capture. Present results differ from those obtained earlier by other author.
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1 Introduction

Some time ago Alhaidari [1] discussed the problem of a charged particle in the field of
a nonrelativistic electric quadrupole and calculated the minimum quadrupole strength
that allows the particle to be bound by the charge distribution. The author chose
the charge distribution of four fixed point charges with zero total charge and dipole
moment. The first nonzero contribution to the multipole expansion is, therefore, the
quadruple term. Since this term is inversely proportional to the square of the distance
between the fifth charge and the origin of the distribution the Schrödinger equation is
trivially separable in spherical coordinates.

In some ways that problem resembles the most widely studied one of a charged
particle in the field of a nonrelativistic dipole moment in three dimensions [2] (and
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references therein). This simple model proved useful in nuclear as well as in molecular
physics [2] (and references therein). In the latter field it has been used to predict the
capture of an electron by a polar molecule to produce an anion. I has been known from
long ago that the polar molecule cannot bind an electron unless the dipole is greater
than some critical value [2] (and references therein). Camblong et al. [2] gave a simple
and smart proof, based on dimensional scaling, of why the simple model is successful.

Alhaidari [1] arrived to a similar conclusion in the case of the particle in the field
of an electric quadrupole in two dimensions. On revising his arguments we found that
his conclusions may not be correct. Since the problem may be of physical interest we
put forward our results in this paper. In Sect. 2 we solve the Schrödinger equation and
derive the conditions for the capture of the charged particle by the electric quadrupole.
We split the Schrödinger equation into the angular and radial parts in the usual way
and show that the radial equation is different from the one derived by Alhaidari. We
also show that the standard solution of the angular part yields results that are different
from those obtained by that author. As a result we obtain conditions for the capture
that considerably differ from those given earlier. In Sect. 3 we summarize the main
results and draw conclusions.

2 Bound states

The dimensionless Schrödinger equation for a particle moving in a potential V (r) is

[
−1

2
∇2 + V (r)

]
ψ(r) = Eψ(r). (1)

In two dimensions this equation is separable in spherical coordinates 0 < r < ∞ and
0 ≤ θ < 2π when

V (r) = Vr (r)+ Vθ (θ)

r2 , (2)

because it takes the particularly simple form
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∂
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∂
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∂θ2 + Vθ (θ)

]}
ψ(r, θ) = Eψ(r, θ). (3)

For comparison purposes throughout this paper we follow the notation used by
Alhaidari [1].

In order to separate the Schrödinger equation into two one-dimensional eigenvalue
equations we write ψ(r, θ) = r−1/2 R(r)Θ(θ) where the angular factor is a solution
to

[
−1

2

d2

dθ2 + Vθ (θ)

]
Θ(θ) = EθΘ(θ), (4)
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with the boundary condition Θ(θ + 2π) = Θ(θ). The remaining radial equation is

[
−1

2

d2

dr2 − 1/4 − 2Eθ
2r2 + Vr

]
R(r) = E R(r). (5)

Note that the term −1/(8r2) is missing from the equation (1.4b) of Alhaidari’s paper.
As we will see below it has a dramatic effect on the condition for the existence of a
bound state in the system.

When Vr = 0 Eq. (5) becomes the eigenvalue equation for an attractive square
potential when α = 1/4 − 2Eθ > 0. It is well known that this operator is self-adjoint
when 0 ≤ α ≤ 1/4 but it does not support negative eigenvalues for such values of
the strength parameter [3]. On the other hand, when α > 1/4 (Eθ < 0 ) the operator
is unbounded from below and exhibits a ground state with arbitrarily negative energy
that is physically meaningless [3]. In-between there is a critical value αc = 1/4 that
takes place when Eθ = 0. The omission of the term −1/(8r2) led Alhaidari to the
wrong critical condition 2Eθ = −1/4.

The charge distribution chosen by Alhaidari [1] exhibits zero total charge and zero
dipole moment. The first nonvanishing contribution to the multipole expansion is the
quadrupole term that he wrote in dimensionless form as

Vθ (θ) = −4ξ sin(2θ), (6)

where ξ is proportional to the strength of the quadrupole. If we take into account that
sin(2θ − π/2) = − cos(2θ) we can rewrite the angular equation as

Θ ′′(θ)+ [2Eθ − 8ξ cos(2θ)]Θ(θ) = 0 (7)

that has exactly the form of the Mathieu equation when a = 2Eθ , q = 4ξ [4]. The
Mathieu equation exhibits four types of solutions that are relevant to our problem:
even and odd and each one of period π and 2π . They can be obtained as Fourier series
with coefficients that satisfy well-known three-term recurrence relations [4].

Alhaidari [1] also derived a three-term recurrence relation (Eq. 2.8). However, his
basis set of polynomial functions Tn(x) of x = sin(2θ) can at most account for the
solutions of periodπ . We verified that the eigenvalues given by that recurrence relation
do not agree with those coming from the recurrence relations for the coefficients of
the Fourier series [4].

In order to obtain the critical values of the quadrupole moment we just find the
values of q = qc such that a(qc) = 0. Since the lowest eigenvalue a0(q) is negative
for all values of q and vanishes at q = 0 we conclude that there will be solutions to the
Schrödinger equation with negative energy for all values of the quadrupole strength
ξ . On the other hand, Alhaidari concluded that the minimum quadrupole parameter is
ξ ≈ 0.2557.

Table 1 shows the first critical values ξc = qc/4 of the quadrupole moment obtained
from the roots of the eigenvalues am(qc) = 0 and bm+1(qc) = 0, m = 0, 1, . . ., of the
Mathieu equation [4]. We observe the occurrence of pairs of close critical parameters
that are due to the fact that bm+1 − am vanishes exponentially q → ∞ [4]. This
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Table 1 First critical values ξc
of the quadrupole moment

Eigenvalue ξc

a0 0

b1 0.2270115834

a1 1.878402574

b2 1.894922593

a2 5.324657803

b3 5.325793406

a3 10.48179309

b4 10.48186048

a4 17.35709457

b5 17.35709827

behaviour is not found in the case of a charged particle in the field of a nonrelativis-
tic electric dipole in three dimensions because the eigenvalues of the corresponding
angular equation do not exhibit such pairing property [6].

3 Conclusions

In this paper we revisited the quantum-mechanical problem of a charged particle in
the field of an electric quadrupole in two dimensions and obtained results that are
quite different from those obtained some time ago by Alhaidari [1]. In the first place
we found that a missing term in the radial equation has a considerable effect on the
condition for the existence of negative eigenvalues. In the second place we showed
that the solution of the angular part of the Schrödinger equation can be rewritten
as a Mathieu equation which enables us to exploit all the analytical properties of
such well-known equation. By means of the standard three-term recurrence relations
for the coefficients of the Fourier expansions [4] we obtained the critical values of
the quadrupole moment. Such recurrence relations may at first sight resemble the
one derived by Alhaidari for the coefficients of the expansion in “improved ultra-
spherical Gegenbauer polynomials”. However, the latter recurrence relation fails to
yield the well-known eigenvalues of the Mathieu equation that appear in the standard
tables [4].

Our calculations show that there is no critical quadrupole-moment strength for the
capture of the charge. This fact makes present quadrupole problem different from the
charge in the field of an electric dipole in three dimensions where such critical value
already exists [5].

Another important difference between the quadrupole and dipole problems is the
occurrence of pairs of close critical quadrupole strengths that do not appear in the
latter three-dimensional problem [6].
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